

Genexine

Company Overview

"Focused on the Development of Innovative Immunotherapeutics and Saving the lives of Patients."

Chairman & Founder	Young Chul Sung, Ph.D.
CEO	You Suk Suh, Ph.D.
Key Milestones	Established in June, 1999Listed on KOSDAQ since 2009
Platform Technologies	Hybrid Fc Fusion TechnologyDNA Therapeutic Vaccine
Developing Area	Immuno-oncologyBio-betterDNA therapeutic vaccine
Employees	• ~165 (MD 2, Ph.D 18, MS 69)
Location	 Korea Bio Park in Techno Valley (Pangyo)

Hybrid Fc Technology (hyFc™) evolving to Multi-Target IO

hyFc™ is a platform
technology to construct
a long-acting Fc fusion
protein hybridized with IgD
and IgG4

Multi Target

Functional Synergy by IO Combination

Combining tumor targeting moiety to cytokine and/or co-stimulatory molecule

Genexine's Pipelines in Clinical Stage

Dhana 1	Dhasa 1h	Dhaca 1h /2a	Dhasa 3	Dhosa 2
Phase 1 GX-G6 (GLP-1-hyFc) Type 2 Diabetes Mono (EU) Completed	Phase 1b GX-I7 (IL-7-hyFc) Solid Tumor Mono (KR) Ongoing 1b	Phase 1b/2a GX-I7 (IL-7-hyFc) Solid Tumor CPA Pre-conditioning (KR) Ongoing 1b/2a	Phase 2 Papitrol-188 Pre-Cervical Cancer Mono (EU/KR) Ongoing	Phase 3
		GX-I7 (IL-7-hyFc) Glioblastoma Mono (KR) Ongoing 1b/2a	GX-H9 (hGH-hyFc) AGHD Mono (EU/KR) Completed	
		GX-I7 (IL-7-hyFc) Glioblastoma TMZ Combo (US) Ongoing 1b/2a	GX-H9 (hGH-hyFc) PGHD Mono (EU/KR) Completed	
		GX-I7 (IL-7-hyFc) Skin Cancer Tecentriq Combo (US) Ongoing 1b/2a	GX-E2 (EPO-hyFc) CKD-induced Anemia Mono (KR) <i>Completed</i>	
		GX-I7 (IL-7-hyFc) TNBC Keytruda Combo (KR) Ongoing 1b/2a	GX-G3 (G-CSF-hyFc) Neutropenia Mono (EU) Completed	
		Papitrol-188 Pre-Cervical Cancer Mono (KR) Completed		
		Papitrol 188 Cervical Cancer Keytruda Combo (KR) Ongoing 1b/2		Immuno-Oncolog DNA vaccine Bio-better drug

Global Partnership and Collaboration

GX-I7

Interleukin-7-hyFc
Cancer and Lymphopenia

GX-I7, Positioning as a "Key Player of Immuno-Oncology"

- Unique homeostatic T-cell growth factor to reconstitute and strengthen anti-tumor T cell immunity
 - Increase number of Naïve T cell and Memory T cell
 - Proliferation of CD4 and CD8
 - Increase Tumor Infiltrating Lymphocytes (TILs)
 - Enhance T cell longevity
- The first-in-class drug for Lymphopenia
- ➢ Genexine and NeoImmuneTech are the only group that pioneers commercialization of long-acting IL-7 as an IO drug

T cell in Cancer Immunology

How the immune response is generated against the tumor

Source: Aduro Biotech image

T cells are the key to destroying cancer

T cell at the Center of Immuno-Oncology

T cell Amplifier

• IL-7 (Genexine/NeoImmuneTech)

T cell Activator

- CAR-T (Kite, Juno, Bluebird, etc.)
- Oncolytic virus (Amgen, Sillajen, etc.)
- Cancer vaccine (Genentech, etc.)
- IL-15 (Novartis, Altor, etc.),
- IL-2 (Nektar), IL-21, etc.
- CD137, OX40

T cell Suppressor Inhibitor

- Anti-PD1 (Merck, BMS, etc.)
- Anti-PD-L1 (Genentech, etc.)
- Anti-CTLA4 (BMS, etc.)
- Anti-TIM-3, anti-LAG-3, etc.
- IDO inhibitor, TIGIT, etc.

Unmet Needs of Current Cancer Immunotherapies

Anti-PD-1/PD-L1

FDA approved Indications and ORR

in patients with

Melanoma	17~50%
Lung cancer	10~30%
Kidney cancer	12~29%
Bladder cancer	15~30%
Head and neck cancer	20~25%
Hodgkin lymphoma	65~87%
Merkel cell cancer	32~64%
MSI-High solid tumors	~50%
Hepatocellular cancer	~15%
Gastric cancer	~15%

Low T-cell numbers in Non-responders

Improving Response Rate and Survival
By Boosting T-cell levels

Wave of Checkpoint Inhibitor Combo Trials

Source: Evaluate Ltd. May 2017

Combination involving checkpoint inhibitor therapies are starting to be used as the standard of care in certain cancer types

GX-I7: Optimized Long-Acting IL-7

GX-I7 (IL-7-hyFc)

Improved in vitro bioactivity vs. IL-7

Protein	ECsd(pM)
IL-7	204
IL-7-hyFc	69

IL-7 Proof of Concept In-vivo and Human

In Healthy Volunteers

- ✓ GX-I7 was well tolerated and safe, and no SAE was observed in the study. The most common AE was G1~2 injection site reaction (83.3%) and resolved over 1~2 weeks.
- ✓ A single dose of IL-7-hyFc substantially increased the absolute lymphocyte counts(ALC) and the number of CD4/CD8 naïve and memory T cells without an increase in the number of regulatory T cells.

 Source: AACR 2019

In syngenic tumor model

Increase of TIL*

- ✓ Mild increase of CD4
- ✓ Dramatic increase of CD8

*TIL: Tumor infiltrating lymphocytes

The Higher T cell # in Blood, The Better Overall Survival

T cell number as a prognostic marker of overall survival in most cancer patients treated with chemotherapy or/and radiotherapy

GX-I7 Potential Clinical Applications

Key Player for Cancer Immunotherapy

Robust Increase of Absolute Lymphocyte Count by Combination of GX-I7 and CPA*

AACR2018, POSTECH SW Lee et al

^{*}Cyclophosphamide is a medication used as chemotherapy and to suppress the immune system.

GX-I7 Enhances Anti-Tumor Effect of Anti PD-1

[Lee SW et. al. Unpublished data]

GX-I7 Combined Therapy with CAR-T

GX-I7 enhances CAR-T expansion and persistence

GX-I7 enhances CAR-T efficacy

DiPersio J. et . al. ASH 2018

Clinical Development Status

NCI: National Cancer Institutie, CITN: Cancer Immunotherapy Trials Network, ION: Immuno Oncology Network, KDDF: Korea Drug Development Fund

 $^{^{}st}$ The sponsor of Glioblastoma and skin cancer is NeoImmuneTech, affiliate company.

^{*} Triple Negative Breast cancer was supported by KDDF and co-developed by Merck and NeoImmuneTech

GX-H9

Long-acting Human Growth Hormone Human Growth Hormone Deficiency

Unmet Medical Needs

Daily Treatment

➤ **365** Injections/year

VS

Weekly/Twice Monthly

> 52/26 Injections/year

Daily

- Painful
- Poor compliance
- Under-treated

Weekly/Twice-Monthly

- Improved Quality of Life
- Good compliance
- Full growth potential

PLoS ONE Jan. 2011 Vol 6 Issue 1 e16223

Age Range of
Target
Population:
5 -12 yrs old

Average
Treatment
Period:
2-7 years

Growth Hormone Therapeutic Market

Market Size of GH was **USD 1.4 billion** in 2018

- Six market players take up 99% of the overall market
- Only Novo Nordisk and Pfizer are developing long-acting growth hormone

Source: GlobalData

- Market size is expected to increase with;
 - ✓ Income increase in emerging countries
 - ✓ Launching of long-acting theraphies
 - ✓ Off label market has great potential

Market Penetration of Long-acting Drugs

Weekly G-CSF Neulasta Penetration after Launching

Source: Bloomberg, Morgan Stanley

- ✓ Long acting G-CSF launched in 2002
- ✓ After launching, penetration 25% in 2002
- ✓ In 2018, penetration went up to 95%

Weekly GLP-1 (Bydureon, Trulicity) Penetration after Launching

- ✓ Long acting GLP-1 launched in 2012
- ✓ In 2017, 86% penetration

Failed Attempts of LA-hGH Development

Reason	Manufacturing issue & Pain (2004)	Safety issue in Phase 2 (2007)	Poor efficacy in Phase 2 (2010)	Safety issue in Phase 2 (2011)	Safety issue in Phase 1 (2016)	Poor efficacy in Phase 3 (2017)
Dose	monthly	weekly	weekly	weekly	weekly	twice-monthly
Long-Acting Technology	PLGA	Pegylation	Pegylation	Targeted Pegylation	Albumin fusion	XTEN
Product	Nutropin	Genotropin	Norditropin	Saizen (Merck-Serono)	Tev-tropin	VRS-317
Company	Genentech	Pfizer	Novo Nordisk	Merck-Serono	TEVA	Versartis
	Reasons for failure: CMC, efficacy, and safety issue					

GX-H9: 12-month Height Velocity Data

Mean (SD) Annualized Height Velocity at 6 months and 12 months after Treatment

Source: ESPE 2018 Poster presentation

*EOW: Every other week

- The height velocity at 12 months indicated com -parable growth rates between all doses of GX-H9 (both weekly and EOW* schedules) and the active comparator, Genotropin[®].
- GX-H9 treatment for 12 months was safe and well-tolerated as Genotropin® for GH-naïve pat -ients with PGHD.
- GX-H9 showed potential for both weekly and twice-monthly administration in children with GHD.

Long-acting Growth Hormone Programs

Compa	ny	Genexine	ascendis pharma	OPKO Pfizer	novo nordisk
Drug		GX-H9	ACP-0001	MOD-4023	NNC0195-0092
Long-acting Tec	hnology	hyFc	TransCon PEG	СТР	Albumin
Frequency		Weekly Twice-monthly	Weekly	Weekly	Weekly
Stage of ———————————————————————————————————		Phase 2 completed	Phase 2 completed	Phase 3 failed	Phase 3 On-going
		Phase 2 completed Preparing for Phase 3 IND	Phase 3 On-going	Phase 3 On-going	Phased 2 completed Preparing for Phase 3 IND
Height Velocity		Ph2 12 month 0.8mg 10.5cm/yr 1.2mg 11.76cm/yr 2.4mg 11.03cm/yr (EOW) Geno 0.03mg 9.14cm/yr	Ph3 12 month 0.24mg 11.2cm/yr Geno 34 μg 10.3cm/yr	Ph2 12 month 0.25mg 10.44cm/yr 0.48mg 10.96cm/yr 0.66mg 11.93cm/yr Geno 0.034mg 12.46cm/yr	Ph2 6 month 0.04mg 8.0cm/yr 0.08mg 10.9cm/yr 0.16mg 12.9cm/yr Nord 0.034mg 11.4cm/yr
СМС		Genetic fusion	Chemical conjugation	Genetic fusion	Chemical conjugation

Papitrol-188 HPV Therapeutic DNA Vaccine

Human Papilloma Virus (HPV) Induced Pre-Cancers & Cancers

HPV induced Cancers

Source: Centers for Disease Control and Prevention (CDC), Number of HPV-Associated and HPV-Attributable Cancer Cases per Year, 2015

- About 270,000 women die from cervical cancer every year
- About 500,000 cervical cancer and other HPV-induced cancer patients builds up about \$2~3 Billion market
- HPV 16/18 type causes
 - 66% of cervical cancer
 - 63% of head and neck cancer

HPV DNA Vaccine Technology

T-cell is the key player for curing cancers infected cell **Killing effect Healthy Human T-cell** : Lymphocyte that play a central role in cell-T cell mediated immunity **Tumor** cell

DNA-based Immunotherapy

DNA-Based Immunotherapy

- HPV 16/18-specific antigen encoded plasmid
- DNA vaccine delivery to cells by intramuscular injection
- HPV-specific antigen activates HPV specific T cells
- Killer CD8+ T cells eliminates HPV-infected cells

Source: Britannica.com, scitechdaily.com

Combination with Keytruda for Cervical Cancer

Blockade of the PD-1/PD-L1 pathway would be strong means to enhance the efficacy of Papitrol-188 vaccination

"Synergistic effect for cancer therapy"

Papitrol-188 & Keytruda® Collaboration Overview

- Phase 1b/2 clinical trial in Korea
- Initiated in May 2018
- Purpose: To investigate an increased response rate of tumor-specific T cell as well as safety and efficacy of combination therapy

Portfolio of HPV DNA Vaccine Pipelines

Program	MOA	Indication	Clinical stage	Remark
D	Induction of HPV16/18	CIN 2/3	Ph2b	
Papitrol 188	(E6/E7)-specific immune responses	Metastatic Cervical Cancer	Ph1b/2	Combination with Keytruda

^{*} CIN: Cervical intraepithelial neoplasia

- Next Pipeline 1 : Target indication CIN1 (2,3)
 Induction of multi-type HPV (E6/E7)-specific immune responses
- Next Pipeline 2: Target indication HPV-associated Cancers
 Enhancement of HPV16/18 (E6/E7)-specific immune responses by adjuvant genes

Development and Business Milestones

Milestones to be achieved in 2019

	1Q	2 Q	3Q	4Q
GX-H9			Ph2 2 year HV data to be released at ESPE	Phase 3 IND submission to US FDA
GX-17	Healthy Data to be released at AACR			Solid Tumor Ph1b interim Data to be released at SITC
GX-G3		Ph2 Final data to be released at ASCO		
Papitrol-188			Ph2b results to be released at IGCS 2019	

Clinical Development

- GX-17:
 - ✓ Combo Studies (TNBC, Skin Cancer) : To initiate trials and validate trend of efficacy
 - √ 1~2 additional indications : To get IND approvals and start trials

Business Development

- Licence-Out deal of Bio-Better Franchise pipelines
- GX-17: Add more combo studies with top-notch global pharma

Financial Information

As of 4Q 2018

(Million KRW)

	2018	2017
Current Asset	177,518	28,892
Total Asset	374,811	140,734
Total Debt	54,304	26,825
Total Equity	320,507	113,909

(KRW)

Numbers for Reference			
Listed # of shares		20,444,934	
52 weeks	high	124,100	
stock price	low	64.400	
2018 R&D Expense		32,715M	

Thank you

Genexine, Inc.

Korea Bio Park, Bldg. B, 700 Daewangpangyo-ro, Bundang Gu, Seongnam Si, Gyunggi Do, 463-400 Korea

Contact:

Hyunjin Oh/ IR/PR hyunjin.oh@genexine.com +82-31-628-3250

